港大&Adobe提出通用生成框架UniReal:通过学习真实世界动态实现通用图像生成和编辑。

本文经AIGC Studio公众号授权转载,转载请联系出处。 今天给大家介绍由香港大学,Adobe提出的统一图像生产与编辑方法UniReal,将多种图像任务统一成视频生成的范式,并且在大规模视频中学习真实的动态与变化,在指令编辑、图像定制化、图像组合等多种任务达到最佳水准。 上图为UniReal多功能性的展示。

 本文经AIGC Studio公众号授权转载,转载请联系出处。

今天给大家介绍由香港大学,Adobe提出的统一图像生产与编辑方法UniReal,将多种图像任务统一成视频生成的范式,并且在大规模视频中学习真实的动态与变化,在指令编辑、图像定制化、图像组合等多种任务达到最佳水准。

图片图片

图片上图为UniReal多功能性的展示。作为一个通用框架,UniReal 支持在单一模型内进行广泛的图像生成和编辑任务,适应不同的输入输出配置并生成高度逼真的结果,可有效处理具有挑战性的场景,例如阴影、反射、灯光效果、物体姿势变化等。

相关链接

  • 论文:https://arxiv.org/abs/2412.07774
  • 主页:https://xavierchen34.github.io/UniReal-Page/
  • 代码:即将开放...

论文概述

论文提出了一个统一的框架UniReal,旨在解决各种图像生成和编辑任务。现有的解决方案通常因任务而异,但基本原则是相同的:在捕捉视觉变化的同时保持输入和输出之间的一致性。受最近视频生成模型的启发,这些模型有效地平衡了帧之间的一致性和变化,文中提出了一种统一的方法,将图像级任务视为不连续的视频生成。具体来说,将不同数量的输入和输出图像视为帧,从而实现对图像生成、编辑、自定义、合成等任务的无缝支持。虽然是为图像级任务设计的,但是利用了视频作为通用监督的可扩展来源。UniReal 从大规模视频中学习世界动态,展示了处理阴影、反射、姿势变化和物体交互的高级能力,同时也展示了用于新应用的新兴能力。

方法介绍

图片UniReal将图像生成和编辑任务制定为不连续帧生成。首先,输入图像通过 VAE 编码器编码到潜在空间中。然后,将图像潜在和噪声潜在修补成视觉标记。之后将索引嵌入和图像提示(资产/画布/控件)添加到视觉标记中。同时,上下文提示和基本提示由 T5 编码器处理。将所有潜在补丁和文本嵌入连接为一个长 1D 张量并将它们发送到转换器。最后对去噪结果进行解码以获得所需的输出图像。

结果展示

自由形式的指导性编辑

图片

主题驱动的图像定制

图片

人体形象个性化

图片

对象/部件插入

图片

图像理解

图片

更多应用

图片

相关资讯

SHMT:通过潜在扩散模型进行自监督分层化妆转移(阿里&武汉理工)

本文经AIGC Studio公众号授权转载,转载请联系出处。 当前的妆容转移技术面临两个主要挑战:缺乏成对数据,导致模型训练依赖于低质量的伪配对数据,从而影响妆容的真实感;不同妆容风格对面部的影响各异,现有方法难以有效处理这种多样性。 今天给大家介绍的方法是由阿里联合武汉理工等提出的自监督层次化妆转移方法(SHMT),可以将多样化的妆容风格自然且精准地应用于给定的面部图像。

Google发布新AI工具Whisk:使用图像提示代替文本,快速完成视觉构思

Google发布了新的AI工具Whisk,Whisk 是 Google Labs 的一项新实验,可使用图像进行快速而有趣的创作过程。 Whisk不会生成带有长篇详细文本提示的图像,而是使用图像进行提示。 只需拖入图像,即可开始创建。

LineArt:无需训练的高质量设计绘图生成方法,可保留结构准确性并生成高保真外观

本文经AIGC Studio公众号授权转载,转载请联系出处。 今天给大家介绍一种无需训练的基于扩散模型的高质量设计绘图外观迁移方法LineArt,该方法可以将复杂外观转移到详细设计图上的框架,可促进设计和艺术创作。 现有的图像生成技术在细节保留和风格样式一致性方面存在局限,尤其是在处理专业设计图时。