预测

达摩院发布八观气象大模型:精度达1小时1公里,率先落地新能源场景

11月6日,阿里巴巴达摩院(湖畔实验室)在北京举行决策智能产品发布会,正式发布八观气象大模型,在全球气象模型基础上引入区域多源数据,时空精度最高可达1公里*1公里*1小时。 通过大幅提升对温度、辐照、风速等关键气象指标的预测性能,八观气象大模型率先落地新能源占比高的新型电力系统,助力国网山东电力调控中心成功预测了多次极端天气,新能源发电功率、电力负荷预测准确率分别提升至96%和98%以上。 传统上,气象学家们根据物理规律,将大气运动变化编写成一系列数学物理方程再进行数值计算,耗费大量算力资源,且受到物理模型的瓶颈制约,难以快速、高效地满足各行业不同准确率、分辨率的天气预需求。

原子、分子、复合物级性质预测均最佳,清华分子预训练框架登Nature子刊

编辑 | KXAI 已广泛用于药物发现和材料设计中的分子筛选。当前的自监督分子预训练方法往往忽略了分子的基本化学特性和物理原理。为了解决这个问题,来自清华大学的研究人员提出了一种称为分数去噪(Fractional denoising,Frad)的分子预训练框架,以学习有效的分子表示。通过这种方式,噪声变得可自定义,允许纳入化学先验,从而大大改善分子分布建模。实验表明,Frad 始终优于现有方法,在力预测、量子化学特性和结合亲和力任务中,取得最先进的结果。改进的噪声设计提高了力准确性和采样覆盖范围,这有助于创建物理一

芝大论文证明 GPT-4 选股准确率高达 60%,人类股票分析师要下岗?AI 大牛质疑数据污染

【新智元导读】GPT-4 在为人类选股时,表现竟然超越了大部分人类分析师,和针对金融训练的专业模型?在没有任何上下文的情况下,它们直接就成功分析了财务报表,这一发现让许多业内大咖震惊了。然而好景不长,有 AI 大牛指出研究中的 bug:之所以会这样,很可能是训练数据被污染了。最近,各位业内大咖都被芝大的一篇论文震惊了。研究者发现,由 GPT-4 帮忙选择的股票,直接击败了人类!同时也 pk 掉了许多其他针对金融训练的机器学习模型。最让他们震惊的是,LLM 可以在没有任何叙述上下文的情况下,就成功分析财务报表中的数字

一个小技巧,解锁 ChatGPT「预测未来」?

【新智元导读】新研究利用了 ChatGPT 在 2021 年 9 月的训练数据截止这一限制,比较了 ChatGPT 在直接预测和未来叙事预测两种不同提示方式下,预测 2022 年各种事件上的表现。结果显示,未来叙事预测方法在预测 2022 年奥斯卡奖得主时表现出色,在预测宏观经济变量时,ChatGPT-4 的表现也有所提高。如今,AI 进步的速度,已经超出了我们对它用途的理解。为了防止 ChatGPT「失控」,OpenAI 定制了一套堪称严苛的「服务条款」,涉及包括法律、医疗 / 健康、个人安全、权利福祉、赌博放贷

GPT-4 整治学术不端:人大 / 浙大团队实测 7000 篇论文,撤稿预测与人类 95% 一致

【新智元导读】人大与浙大学者发现,GPT-4 对于论文给出的撤稿预测结果,竟然和人类审稿人有将近 95% 的相似性。看来大模型虽然有可能引发学术不端,但也有办法维护科研诚信啊。学术论文的撤稿事件时有发生,这不仅损害了科研诚信,也可能对公众信任和科学进展产生负面影响。传统上,学术界依赖同行评审和出版后的读者反馈来识别和纠正问题论文,但这些方法可能无法及时发现所有问题,尤其是在当前科研论文出版数量急剧增加的背景下。在这种情况下,如何快速识别存在问题的论文,并促进它们的撤稿,成了学术界亟待解决的一个难题。最近,来自中国人
  • 1