算法

问同一个问题 DeepSeek-r1 / Grok-3 / Gemini 2.0 / ChatGPT 的结果出乎意料...

最近在写 TS ,希望实现一个类似 .gitignore 的功能,已有代码如下:复制在 JS 层面使用正则匹配,显然不是什么好方案。 于是整理代码和报错信息,找了四个免费的模型,问问思路。 先说结论:DeepSeek-r1 思考了 298 秒,我一度以为其陷入了死循环,但最后其在第一轮给出的方案,被 Grok-3 、 Gemini 2.0 、 ChatGPT 统统认可是最优方案之一。

简单示例提升DeepSeek-R1美国数学邀请赛AIME分数:以步骤为粒度对齐上下文学习与推理

仅需简单提示,满血版DeepSeek-R1美国数学邀请赛AIME分数再提高。 上海交大、港中文、上海AI实验室等带来最新成果BoostStep对齐推理和上下文学习粒度,大幅提升上下文学习性能,突破少样本学习上限。 图片大语言模型使用多步推理解决复杂数学问题,即先将复杂问题分解为多个步骤并逐步进行推理。

大模型超强内存优化:成本削减高达75%,性能不减弱!成果出自日本一初创AI公司之手;网友:电力可能够用了!

出品 | 51CTO技术栈(微信号:blog51cto)一项逆天的大模型优化技术来了! 东京初创公司Sakana AI的研究人员开发了一种新技术,让大模型能够更有效地使用内存,不仅最多节省75%的内存占用,还甚至性能也有所提升! 这种名为“通用Transformer内存”的技术使用特殊的神经网络优化LLM,保留重要的信息并丢弃冗余的细节。

RARE: 提升LLM推理准确性和事实完整性的检索增强框架思路浅尝

MCTS & rStar蒙特卡洛树搜索(MCTS)蒙特卡洛树搜索(MCTS)是一种用于解决复杂决策问题的算法,常用于游戏等领域。 它的基本思想是通过构建一棵搜索树并模拟各种可能的行动来估计每个行动的价值。 MCTS的过程可以分为四个主要步骤:选择(Selection):从根节点开始,根据某种策略(如UCT)遍历子节点,直到找到一个叶节点。

提升 1.5~20 倍吞吐量,字节豆包大模型团队与香港大学发布并开源全新 RLHF 框架

字节跳动豆包大模型团队与香港大学公开联合研究成果 —— HybridFlow。 官方宣称,HybridFlow(开源项目名:veRL)是一个灵活且高效的大模型 RL 训练框架,兼容多种训练和推理框架,支持灵活的模型部署和多种 RL 算法实现。 该框架采用混合编程模型,融合单控制器(Single-Controller)的灵活性和多控制器(Multi-Controller)的高效性,可更好实现和执行多种 RL 算法,显著提升训练吞吐量,降低开发和维护复杂度。

豆包大模型团队开源RLHF框架,训练吞吐量最高提升20倍

强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。 近日,字节跳动豆包大模型团队与香港大学联合提出 HybridFlow。 这是一个灵活高效的 RL/RLHF 框架,可显著提升训练吞吐量,降低开发和维护复杂度。

AI 赋能游戏开发:Valve 工程师借助 ChatGPT 改进《Deadlock》匹配算法

感谢Valve 工程师 Fletcher Dunn 昨日在社交媒体上分享了他使用 ChatGPT 改进《Deadlock》匹配算法的经历。他表示,ChatGPT 就像一个高级搜索引擎,能够帮助他找到所需的解决方案。Dunn 在《Deadlock》的测试阶段向 ChatGPT 提出了改进匹配算法的需求,ChatGPT 建议他使用匈牙利算法。Dunn 采纳了这个建议,并表示他对 ChatGPT 的强大功能感到惊讶。Dunn 认为,ChatGPT 的强大之处在于能够理解自然语言并提供相关信息。即使在专业领域如游戏开发,C

光学算法简化模拟人工智能训练

编辑 | 白菜叶研究人员开发了一系列模拟和其他非常规机器学习系统,期望它们将证明比今天的计算机更节能。但是训练这些人工智能来完成它们的任务一直是一个很大的绊脚石。NTT 设备技术实验室和东京大学的研究人员现在表示,他们已经提出了一种训练算法(NTT 上个月宣布),该算法对让这些系统实现其承诺大有帮助。他们的结果建立在光学模拟计算机上,代表了在获得研究人员长期以来从「非常规」计算机架构中寻求的潜在效率增益方面取得的进展。现代人工智能程序使用一种名为人工神经网络的受生物学启发的架构来执行图像识别或文本生成等任务。控制计
  • 1