每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

AI 起来以后,很多公司都在寻找 AI 的落地应用场景,都在思考项目工程的流程节点怎么用 AI 去做提效。随着人工智能技术的快速发展,图像生成需求在许多行业中迅速增长。目前,许多企业已经开始广泛使用 Stable Diffusion(SD)技术进行图像生成。例如创作 IP 的延展,或应用于广告、产品设计、游戏开发等多个领域。然而,面向企业的大规模图像生成需求,批量化是一种刚需。 企业在使用 SD 进行图像生成时,往往需要处理大量的图像素材。这一过程中包括编写 CSV 需求单、审核素材、打标和命名等步骤,传统的手工操

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

AI 起来以后,很多公司都在寻找 AI 的落地应用场景,都在思考项目工程的流程节点怎么用 AI 去做提效。随着人工智能技术的快速发展,图像生成需求在许多行业中迅速增长。目前,许多企业已经开始广泛使用 Stable Diffusion(SD)技术进行图像生成。例如创作 IP 的延展,或应用于广告、产品设计、游戏开发等多个领域。然而,面向企业的大规模图像生成需求,批量化是一种刚需。

企业在使用 SD 进行图像生成时,往往需要处理大量的图像素材。这一过程中包括编写 CSV 需求单、审核素材、打标和命名等步骤,传统的手工操作流程效率低下且容易出错。如果通过 AI 节点式接入和 GPT 技术,可以显著优化这些流程,提高效率和质量。

所以我们需要去搭建一整个 SOP,将批量生图做成工程化,这样才能提高效率。批量产图 SOP 的设计需要明确每一个流程节点,保证高效、标准化的操作。

一、传统的 SOP 流程

我们之前传统的产图 SOP,需要投入的人力大概在 5 个:

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

技术开发同学:负责编写工程文件,预留 SD 的 API 接口,保证系统能够灵活调用 SD 进行图像生成。 模型炼制设计师:负责炼制 Lora,确保产出的素材符合公司需求的统一风格,能够满足不同类型素材的需求,如 3D 风格、插画风格和真实场景等。 prompt 编写设计师:编写 CSV,确定图像生成的具体需求(即生图 prompt)。 素材审核员:在图像生成完成后,整理和审核输出的素材。制定素材入库的视觉标准,区分素材为三类:一类是达到视觉标准,无需二次调整的素材;一类是有略微瑕疵,二次调整后可达到入库标准的素材;一类是严重异形、画面杂乱等素材,无修改价值的素材。 素材管理员:针对素材的业务、类型、标签、命名做有效分类,确保素材在平台上的可查找性和可管理性。

整个 SOP 的运行中最核心的是 prompt 编写设计师的角色,他需要调控 prompt 和替换 lora,需要去调试工程文件中的节点。技术开发同学和模型炼制设计师其实都是前置资源,从产图到入库可使用的这个逻辑是这样的:

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

由 prompt 编写设计师编写 csv 条目,一个条目是一个图像生成的 prompt,所以批量生产同样的需要批量写 prompt,prompt 影响最终产图的质量。例如我们编写 10 个 prompt,那就可以产出 10 张素材。编写 100 个,那就可以产出 100 张素材。但人工编写的过程非常耗时耗力,这个节点是否可以借助 AI 的能力去提效?又该如何接入 AI?这个可以先思考一下,我们接着链路往下看。

当批量产出素材后,例如今天产出 2000 张素材,将素材转接给素材审核员,按照入库的视觉标准将素材进行分类和二次调整。2000 张图需要多久,不包含调整的过程,只去审核区分素材就需要 1-2 个小时。那 20000 张呢?这个节点是否有 AI 运作的空间?

当素材处理完,假设良品率为 40%,可直接入库的素材为 800 张,由素材管理员进行分类和素材信息标注。当然我们也可以只给素材命个名,如:3D 红包.png 那如果有 200 个不同的红包素材,素材如何有效召回,所以素材如何有效管理,之前传统的素材管理,是将命名作分级,如:业务 A/3D/红包/装满金币。那仅这个命名过程,假设一张素材命名需要 5s,那 800 张仅命名大约需要 1.11 小时。那这个时间是否可以借助 AI 给吃掉?

二、SOP 流程:AI 节点提效

ok,我们梳理一下整个产图到入库的流程链路,其中费时费力的节点:

prompt 批量编写 素材审核 素材分类及信息标注

这些节点如何借助 AI 做提效或者直接用 AI 的能力给吃掉。我是借助 GPT 的能力,让技术同学预留出 GPT 的 API 接口,我负责炼制 GPTs,将调试好的 prompt 发给前端,在工程文件中调用。在多个节点安插 GPT:

输入想要的素材关键词及数量--批量产出 prompt 条目(GPT 助力)--导入 csv 需求单--运行程序--调用 SD 做批量产图--素材质量筛选,将素材分类(GPT 助力)--素材信息标注(GPT 助力)

所以除了前置资源,前端提供的工程文件和模型炼制设计师提供的 lora,剩余的事情只需要一名设计师即可,不仅减少人力成本,而且效率还比之前高数倍甚至数十倍。

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

GPT 助力,都炼制了哪些 GPTs?我们逐一分析一下相关的 prompt 该如何写:

1. 批量 csv 条目助手

通过简单的关键词描述, 批量产出 csv,不过这里要注意一点,我们需要制定 prompt 规则:

prompt 指令规则:*图像名称(内容),*图像具体关键词,不希望图像里有什么

打开[新建文件夹」找到“csv”右键打开操作目录,选择“打开于-Finder”选中文件夹中的“csv”,右键打开方式选择-“文稿编辑”填入 csv 条目

① Prompt

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

② 输出效果

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

输出的所有 csv 条目,并非可以一次成功,产出素材的内容差异性和风格统一性还是需要人工把控,毕竟只有你才知道你真正想要什么,你想要一个有卡通翅膀的红包,这种装饰性词汇具备不可控且不可猜性,所以人工针对 csv 条目做二次调整。

2. 素材审核员

用 AI 代替人工做素材质量的判断和分类,做初级筛选,人工做素材质量的二次审核,确保最终素材均达到入库标准。

批量产出的素材分为三个档:S 级、A 级、B 级。

S 级:完全达到入库视觉标准;A 级:基本达到入库视觉标准,单一或部分元素轻微瑕疵;B 级:不符合入库视觉标准,画面杂乱、元素变形、穿模等严重瑕疵。

① Prompt

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

大家可以试一下,将 GPT 的 API 接入工程文件中,批量生产的素材输出在「新建文件夹」中,调用 API 读取图片,将每个图片文件传输后做质量审核和分类。API 返回的数据包含会 label 字段,用于分类。根据返回的分类标签,将图片移动到对应的分类文件夹中。

处理返回数据并自动分类移动图片的 Python 代码示例:

import os
import openai
import shutil

# 设置OpenAI API密钥
openai.api_key = 'your_openai_api_key'

# 批量图片文件夹路径
input_folder = 'Batch_Image'
output_folder = 'Processed_Images'

# 创建输出文件夹(如果不存在)
if not os.path.exists(output_folder):
os.makedirs(output_folder)

# 函数:调用OpenAI API进行图片质量审核和分类
def analyze_image(file_path):
with open(file_path, 'rb') as image_file:
image_data = image_file.read()

response = openai.Image.create(
file=image_data,
n=1,
size="1024x1024",
prompt="Classify and review the quality of this image."
)

return response

# 遍历Batch_Image文件夹中的所有图片文件
for filename in os.listdir(input_folder):
if filename.endswith('.jpg') or filename.endswith('.png'):
file_path = os.path.join(input_folder, filename)

# 调用OpenAI API
response = analyze_image(file_path)

# 假设API返回的数据如下
result = response['data'][0]
classification = result['label']

# 打印结果(可选)
print(f"Image: {filename}, Classification: {classification}")

# 根据分类结果将图片移动到不同的文件夹中
classification_folder = os.path.join(output_folder, classification)
if not os.path.exists(classification_folder):
os.makedirs(classification_folder)
shutil.move(file_path, os.path.join(classification_folder, filename))

print("Processing completed.")

3. 素材信息标注员

素材的管理以业务、素材类型做分类;以标签、命名做标注。所以也需要一些前置信息的准备。业务和素材类型的全量信息,标签库的搭建和标签填充,命名的规则和限制。

其中标签,我以类别维度去搭建的标签格式:

一、主要类别(1)子分类 [具体标签]

大概整理了 17 个主要类别,基本囊括 80%的图片素材类别,后期也会定期维护更新。

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

标签体系搭建后,对素材进行了全面的命名规范:

业务(判断)-素材类型(判断)-标签一、标签二、标签三-人物描述/物体名称(判断,不超过 4 个字)-动作/场景/特征(判断,不超过 6 个字)。

素材的名称即为:人物描述/物体名称(判断,不超过 4 个字)-动作/场景/特征(判断,不超过 6 个字)。例:一张女足的素材。全命名为“业务-3D-青年、运动健身、运动员-女孩-踢球”。

① Prompt

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

② 输出效果

每小时1200张素材图!保姆级教程帮你搭建批量生图的SOP工程

完成这一切的部署,就可以批量生图,素材审核,针对素材信息进行自动填充,素材批量上传入库。

关于 Prompt 如何编写,感兴趣的同学可以看之后的文章。此篇文章意在分享目前大厂内部针对 AI 是如何运作,如何借助 AI 的能力做节点式提效。

由于该 SOP 并不是一个产品化的流程,所以需要设计师掌握一定的代码能力:

部署 Python 集成开发环境(IDE):为 Python 开发提供了一个强大的工具集,如 Spyder、Jupyter Notebook、PyCharm 等 Python 开发工具都可以。

目前的批量生成素材的质量还是不错的,不过良品率还是有点低,在 15%左右,不过纯批量生产可以达到 1200 张/小时,可直接入库的素材至少有 144 张。若不调试 csv 持续输出,每天达到入库视觉标准的素材有 1152 张。当然这是理想的数据。目前有着隐性和显性两个方面的元素影响,例如一:网速、调用 SD 批量生图时长和读取图片的返回数据时长这些隐形因素。二:人工二次审核和 csv 条目的调试这些显性因素。

通过接入 GPT,减少了人工操作的时间,使得整体流程更加高效。prompt 批量生成、素材筛选、标签生成和命名等环节均实现了自动化,大幅提升了工作效率。利用 GPT 的智能筛选与标记功能,可以确保素材质量的一致性和可靠性,减少了人工操作可能导致的错误。自动化的生成与筛选流程大大减轻了人工操作的负担,使得成本降低的同时效率提升。

相关资讯

SD WebUI 中也能用上实时绘画了!支持接入PS/Blender 等设计工具

大家好,这里是和你们一起探索 AI 绘画的花生~ 之前为大家介绍过 AI 绘画工具 Krea,它可以根据手绘的草图实时生成完整的画面,可以让我们更精准地控制图像效果,对电商、产品、游戏概念等设计领域来说非常有帮助。之前为大家推荐过一种在 ComfyUI 中免费实现 AI 实时绘画的方式,今天就再为大家推荐另一种在 Stable Diffusion WebUI 中实现实时绘画的方法。一、插件简介 SD WebUI 的实时绘画功能需要借助一个插件实现,这个插件是上周由 B 站 AI 绘画博主@朱尼酱推出,支持文生图、图

新模型 Stable Diffusion 3 与 Stable Cascade 全面解析

大家好,我是花生~ 最近 Stability AI 又接连推出了 2 个新的模型:Stable Diffusion 3 和 Stable Cascade,在图像生成效率和质量上比半年前推出的 SDXL 1.0 有了明显提升,今天就为大家介绍一下 2 款新模型的特点和用法。 :一、Stable Diffusion 3 简介 官方介绍: 加入等候名单: 2 月 22 号,Stability AI 发布了新模型 Stable Diffusion 3(下面简称为 SD 3.0),这也是 Stable Diffusion

AI绘画神器Stable Diffusion模型再升级!新版亮点全面盘点!

大家好,这里是和你们聊设计的花生~ 之前为大家对比了 6 款在线 AI 绘画软件在不同主题上的图像生成效果,最终是 Midjourney 的整体表现最好,而 Stability AI 官方模型 Stable Diffusion v2.1 则表现不尽如人意。最近 Stability AI 又推出了一个新模型 Stable Diffusion XL,参数是 SD v2.1 的 2.5 倍,那这个新模型的图像生成效果如何呢?今天就继续来测试一下。 往期回顾:Stable Diffusion XL 简介 DreamStud