Meta 推出 LLM Compiler 代码优化模型,可搭配其他 AI 改善代码生成 / 编译能力

Meta 前天推出了一款名为“LLM Compiler”的模型,该模型基于 Meta 现有的 Code Llama 打造,主打代码优化,目前相关模型已登陆 Hugging Face,提供 70 亿参数及 130 亿参数两个版本,允许学术及商业使用,IT之家附项目地址如下:点此访问。Meta 认为,尽管业界各大语言模型已在各种编程代码任务中展现了出色的能力,但此类模型在代码优化还有进步空间,目前推出的 LLM Compiler 模型便是一款专为优化代码任务设计的预训练模型,能够模拟编译器对代码进行优化,或将“已经过优

Meta 前天推出了一款名为“LLM Compiler”的模型,该模型基于 Meta 现有的 Code Llama 打造,主打代码优化,目前相关模型已登陆 Hugging Face,提供 70 亿参数及 130 亿参数两个版本,允许学术及商业使用,IT之家附项目地址如下:点此访问。

Meta 推出 LLM Compiler 代码优化模型,可搭配其他 AI 改善代码生成 / 编译能力

Meta 认为,尽管业界各大语言模型已在各种编程代码任务中展现了出色的能力,但此类模型在代码优化还有进步空间,目前推出的 LLM Compiler 模型便是一款专为优化代码任务设计的预训练模型,能够模拟编译器对代码进行优化,或将“已经过优化的代码转换回原本的语言”。

IT之家获悉,LLM Compiler 在 5460 亿个 LLVM-IR 和汇编代码标记的庞大语料库上进行了训练,据称能够达到 77% 的“代码优化潜力”,开发者可以自由将相关模型配合其他 AI 模型一起使用,从而改善生成代码的质量。

相关资讯

Meta 发布基于 Code Llama 的 LLM 编译器:优化代码大小、反汇编

感谢Meta 官方在 X 平台宣布推出 LLM 编译器,这是一个基于 Meta Code Llama 构建的模型家族,具有额外的代码优化和编译器功能。这些模型可以模拟编译器,预测代码大小的最佳传递,并可反汇编代码,可以针对新的优化和编译器任务进行微调。Meta 在 HuggingFace 上公开了 LLM 编译器的 7B 和 13B 模型,采用宽松的许可协议,允许用于研究和商业用途。IT之家附链接:,LLM 在各种软件工程和编码任务中展示其能力,然而在代码和编译器优化领域的应用仍然未被充分探索。为了解决这一问题,M

为什么要纯C语言手搓GPT-2,Karpathy回应网友质疑

Karpathy:for fun.几天前,前特斯拉 Autopilot 负责人、OpenAI 科学家 Andrej Karpathy 发布了一个仅用 1000 行代码即可在 CPU/fp32 上实现 GPT-2 训练的项目「llm.c」。llm.c 旨在让大模型(LM)训练变得简单 —— 使用纯 C 语言 / CUDA,不需要 245MB 的 PyTorch 或 107MB 的 cPython。例如,训练 GPT-2(CPU、fp32)仅需要单个文件中的大约 1000 行干净代码(clean code),可以立即编

Meta AI 全球市场扩张,并上线网页版 meta.ai

Meta 公司近日宣布 Llama 3 大语言模型之外,扩展 Meta AI 服务到美国之外的 13 个国家和地区,还宣布上线专门的聊天网站:meta.ai。Meta 公司在新闻稿中表示开始在全球市场扩展 Meta AI,在澳大利亚、加拿大、南非和新加坡等国家和地区推出英语版本。IT之家附上 Meta AI 扩展的国家和地区如下澳大利亚加拿大加纳牙买加马拉维新西兰尼日利亚巴基斯坦新加坡南非乌干达赞比亚津巴布韦Meta AI 整合了 Llama 3 大语言模型,速度更快、智能性更高、功能更强,是执行各种任务的理想选择