如何精准识别伪装场景

11月27日,中央党校权威刊物《学习时报》(全党唯一一份专门讲学习的中央级报纸)的科技前沿版,特别刊登了南开大学教授范登平先生的文章《如何精准识别伪装场景》。 该文深入浅出地介绍了伪装场景理解技术的最新进展,展现了很强的专业价值与前瞻性,目前在党政领导干部内反响不错。 相信随着这一前沿科技的持续发酵,将会逐步跨越专业界限,进入大众视野,成为推动科技军事和社会进步与创新的重要力量。

11月27日,中央党校权威刊物《学习时报》(全党唯一一份专门讲学习的中央级报纸)的科技前沿版,特别刊登了南开大学教授范登平先生的文章《如何精准识别伪装场景》。该文深入浅出地介绍了伪装场景理解技术的最新进展,展现了很强的专业价值与前瞻性,目前在党政领导干部内反响不错。

相信随着这一前沿科技的持续发酵,将会逐步跨越专业界限,进入大众视野,成为推动科技军事和社会进步与创新的重要力量。

图片

在自然界,有不少动物都能够利用周边环境,将自己很好地隐藏起来。例如,变色龙在遇到危险时,会根据周围环境改变身体颜色,以融入场景,实现隐身。同样,人类为了保护重要目标,也会利用伪装技术。特别是在军事领域,伪装技术已超越了简单的迷彩服和丛林隐蔽,借助虚拟现实、人工智能和机器学习等高科技手段,创造出更为逼真、复杂的伪装效果。近年来,伪装技术的广泛应用显著提升了目标隐蔽性,极大地增加了侦察与打击的难度,即便是精确制导武器也面临严峻挑战。加之战场环境中的迷雾、烟雾等自然因素,更是让伪装效果更加逼真。面对这一复杂局面,如何有效识别并理解伪装目标成为一个关键的作战挑战,而伪装场景理解技术的应运而生,让伪装场景得以发现和理解。它专注于解析那些主动或被动融入环境的具有伪装特性的对象,如同变色龙般在场景中“消失”的奥秘。这一技术融合了认知学、心理学及人工智能等前沿学科,成为“新一代人工智能”技术体系中的一把利剑,不仅为军事领域带来了革命性的突破,更预示着在深海监控、精准医疗等多个领域将展现出巨大的应用潜力,为我国构筑起强大的技术应用壁垒。

(一)

美国艺术家阿博特·塞耶和英国动物学家休·科特分别在1909年和1940年从生物学的角度研究了伪装的特性。他们发现,“伪装”作为自然界中一种常见的生物行为,能够帮助生物在栖息环境中进行自我保护或者主动狩猎,从而为其提供重大的生存优势,并通过自然进化得以强化。一般而言,生物个体会巧妙利用色彩、拟态、运动等模式组合,将自己完美地藏匿于所在的栖息环境之中,使其难以被发现。

自那时起,研究者们开始尝试在近百张含有伪装目标的图像中定位伪装目标。以色列科学家Tankus等人在1998年利用诸如十字算子等手工设计特征在近100张含有伪装目标的图像上进行凸度估计,而印度科学家Sengottuvelan等人在2008年则采用共生矩阵等方法进行探索性图分析来定位场景中的伪装区域。然而,这些方法主要依赖逐像素或局部区域的计算方式来定位伪装目标,对全局信息的把控相对较弱。由于伪装目标极易受到局部特征干扰而产生定位偏差,且传统方法难以充分融合全局和局部特征,导致这些检测效果并不理想。

由于伪装数据的匮乏,科学家对伪装任务的探索一度停滞不前。直至2020年,当时在阿联酋起源人工智能研究院(IIAI)工作的我国科学团队首次将研究焦点转向了图像伪装目标检测任务。该团队率先发布了首个数据规模高达1万张的伪装目标检测数据库COD10K,并基于人类在场景中先搜索后识别的认知规律,设计了首个搜索识别网络(SINet)来高效地检测伪装目标。由于成果的前瞻性,英国权威杂志《New Scientist》进行了专题报道,称“人工智能技术可以发现伪装目标了”。中国人工智能学会也对SINet系列技术进行了鉴定,将其评定为国际领先水平。

同年,英国皇家学会院士、计算机视觉领域最高荣誉Marr奖得主安德鲁·兹泽曼教授团队在牛津大学构建了第一个MoCA视频伪装目标检测数据库,并提出利用移动特征来检测视频中的伪装目标,取得了良好的效果。至此,图像和视频伪装目标检测这两项原创性工作,成为伪装场景理解的基础任务。

伪装目标检测任务相比传统目标分割更为困难,原因在于伪装目标的边缘微弱,特征传递时易发生梯度消失,且主体对象多样,表现出不同纹理,导致特征在不同维度空间的表现形式不同,目标特征变化显著。科学家针对边缘不确定性和主体纹理多样性问题,为了能够精确地分割伪装目标,提出了基于边缘梯度的建模方法以及基于不确定性图的建模方法等新思路。

(二)

自2020年以来,在伪装目标检测任务的基础上,来自中国、美国、欧洲、日本、澳大利亚、加拿大、中东等国家和地区的顶尖科研团队,利用卷积神经网络、图神经网络、搜索识别系列策略和生成提示技术等构建了一系列子任务,包括图像伪装目标检测、伪装目标等级排序、多模态伪装目标检测、伪装个体分割、参考式伪装目标检测、海洋伪装目标计数、植物伪装检测、伪装数据生成等。这些子任务为伪装场景理解提供了助力,形成了百花齐放的局面。

随着伪装场景理解中各项子任务的蓬勃发展,其应用前景也逐渐明朗。这些应用包括军事打击、深海监控、精准医疗、工业缺陷检测等。

在军事领域,目标天然具有伪装性,这使得伪装场景理解技术成为典型应用场景。伪装场景理解系统可以集成到无人机平台上,执行高空侦察和监视任务。无人机能够覆盖广阔的区域,对地面目标进行持续的监视。搭载的高精度感知系统能够穿透伪装,识别出敌方的防空系统、移动车辆和其他重要目标。此外,无人机还可以利用其高机动性,对特定目标进行精准追踪,并在必要时引导精确打击武器进行攻击。

在海洋环境中,伪装场景理解系统可以搭载在无人潜航器上,用于探测和追踪水下生物。通过集成声呐和光学传感器,该系统能够在复杂的水下环境中准确识别出特定目标,为海洋生态和海洋安全提供实时情报。这将为伪装场景无人系统在海洋技术链布局奠定基础,进一步提升军事作战感知能力,为军事指挥官提供实时、准确的情报,确保在现代战争中发挥关键作用。

在精准医疗领域,尤其是在早期疾病的筛查中,病变区域和周围的组织较为接近,呈现出同质性,传统的技术手段很难识别出来。而伪装场景理解技术恰恰适合找出这样的同质疾病区域,有利于医疗辅助诊断,提高检测率。

在工业缺陷检测领域,典型的应用包括亚马逊的Lookout Vision制造缺陷检测技术、谷歌的Visual Inspection AI电路板检测技术、腾讯的屏幕划痕缺陷检测技术等。伪装场景理解技术也天然地适合检测这些微弱的工业级缺陷,通过其高级图像分析能力,能够更精确地识别出难以察觉的瑕疵,为工业质量筛查发挥重要作用,进一步提升了整体检测水平和生产线的智能化程度。

除了以上应用场景外,对大自然中生物伪装特性的深入理解同样具有深远的科学意义。这一研究有望在众多基础科学领域催生出一系列重要应用成果,包括但不限于伪装仿生材料的开发、机器人避障技术的提升、文娱艺术的创新以及农业病虫害预警系统的优化等。

(三)

作为未来科技发展的重要方向,伪装场景理解技术因其高度的复杂性和挑战性而备受关注。我国的研究团队已经在这一领域取得了显著的进展,积累了大量的核心研究数据,掌握了相关的基础技术,并制定了评价标准。目前,国内已经形成了一个相当规模的隐性视觉感知技术研究社群,其整体研究水平已经处于国际领先地位。

进一步推动伪装场景理解技术的发展,必须采取一系列积极的措施。首先,加大资金投入,设立专项研究基金。支持伪装场景理解基础技术的研究和发展,以探索更多的原理机制,推动技术的不断创新和突破。同时,通过设立奖励机制,激励科研团队取得原创性成果,提升国际竞争力。其次,重点扶持“黄大年式科研团队”。具有创新精神和实力的科研团队是推动伪装场景理解技术发展的关键力量,重点扶持那些具有显著成果和潜力的科研团队,为他们提供充分的资源和支持,激发他们的创新活力。最后,加强国际合作与交流。伪装场景理解技术需跨学科合作,应积极与国际知名科研机构和企业建立合作关系,共同研究与应用,促进技术进步。同时,推动伪装场景理解技术的多元化应用,探索更多具有创新性和实用性的应用场景,实现技术原理与应用场景的良性互动。

(作者系南开大学计算机系主任、教授)

相关资讯

第一!科大讯飞再度刷新Cityscapes世界纪录

近日,科大讯飞凭借在道路目标检测领域多年的技术探索,刷新了Cityscapes 3D目标检测任务的全球最好成绩,得到检测分数(DS)42.9,取得了该项评测的第一名。此次也是科大讯飞继2017年、2018年参与测评之后,再一次刷新Cityscapes的世界纪录。此次评测,科大讯飞借鉴了已在城市交通出行场景下应用的Anchor-Free车辆检测技术,将2D目标检测技术升级至3D,并结合3D到2D重投影的特殊先验信息进行算法迁移。通过结合语义、上下文信息、位置先验信息以及目标形状先验信息等,提取精确的3D目标检测框,构

现在入行CV还有前途吗?AI青年学者这样看「未来五年的计算机视觉」

为了推动 AI 技术的应用创新,促进人工智能领域的学术交流、人才培养,打造人工智能的人才交流平台与产业生态圈,中国人工智能学会联合杭州市余杭区人民政府联合发起了首届全球人工智能技术创新大赛,并得到了阿里云、OPPO 等头部科技企业的积极参与和支持。阿里云天池平台为本次大赛提供平台和算力支撑。 AI 青年说是大赛主办方为提升青年开发者对 AI 的认识而主办的系列活动,该活动邀请知名青年学者,探讨理论研究与应用实践中的热点话题。本文对 AI 青年说系列活动第三期「未来五年的计算机视觉」核心内容进行了总结回顾。

CVPR2022 | 利用域自适应思想,北大、字节跳动提出新型弱监督物体定位框架

将弱监督物体定位看作图像与像素特征域间的域自适应任务,北大、字节跳动提出新框架显著增强基于图像级标签的弱监督图像定位性能