DM
绕过直接数值模拟或实验,生成扩散模型用于湍流研究
编辑 | 绿罗了解湍流平流粒子的统计和几何特性是一个具有挑战性的问题,对于许多应用的建模、预测和控制至关重要。例如燃烧、工业混合、污染物扩散、量子流体、原行星盘吸积和云形成等。尽管过去 30 年在理论、数值和实验方面做出了很多努力,但现有模型还不能很好地再现湍流中粒子轨迹所表现出的统计和拓扑特性。近日,意大利罗马第二大学(University of Rome Tor Vergata)的研究人员,提出了一种基于最先进的扩散模型的机器学习方法,可以在高雷诺数的三维湍流中生成单粒子轨迹,从而绕过直接数值模拟或实验来获得可
5/20/2024 4:54:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
代码
Anthropic
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
研究
生成
Claude
机器学习
LLM
计算
Sora
AI设计
AI for Science
AI视频
GPU
xAI
人形机器人
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
工具
大型语言模型
Transformer
RAG
视觉
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
DeepMind