泛化
Creator 面对面 | 大规模预训练模型的新思考:效率和泛化
自 2018 年谷歌推出 BERT(3.4 亿参数)以来,语言模型开始朝着「大」演进。国内外先后出现了参数量高达千亿甚至万亿的语言模型,比如谷歌的 T5(110 亿)、OpnAI 的 GPT-3(1,750 亿)、华为联合鹏城实验室的盘古(Pangu)(2000 亿),智源研究院的 WuDao2.0(1.75 万亿)……
对于这样的大模型,其背后支撑的是巨额的算力要求。那么对于 AI 民主化,降低模型训练门槛和壁垒,同时兼顾性能和表现,在未来模型的训练上又会有怎样的思考呢?
7/26/2022 3:55:00 PM
SOTA模型
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
人形机器人
苹果
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型