科学
AlphaFold3级性能、开源、可商用,MIT团队推出生物分子预测模型Boltz-1
图示:来自测试集的靶标上的 Boltz-1 的示例预测。 (来源:论文)编辑 | 萝卜皮2024 年 11 月 18 日,麻省理工学院(MIT)的研究人员宣布推出 Boltz-1,这是一个开源模型,旨在准确模拟复杂的生物分子相互作用。 Boltz-1 是第一个完全商业化的开源模型,在预测生物分子复合物的 3D 结构方面达到 AlphaFold3 级精度。
创新能力超越AI Scientist,上海AI Lab「AI 科研团队」VirSci来了
编辑 | ScienceAI由上海人工智能实验室提出的 VirSci(Virtual Scientists)系统是一个基于大语言模型(LLM)的多智能体协作平台,专注于模拟科学家团队的合作过程,从而加速科研创新。 不同于以往的单智能体系统,VirSci 通过使用真实科学家的数据来模拟科学团队的多人协作,不仅可以通过团队成员的合作讨论来生成更具创新性和影响力的科研想法,还展现出作为「科学学」(Scienceof Science)研究工具的巨大潜力。 该研究以「Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation」为题,于 2024 年 10 月 12 日发布在 arXiv 预印平台。
浙大团队发布 75 页科学 LLM 调查,重点关注生物和化学领域,指出七个未来发展方向
编辑 | X大型语言模型 (LLM) 已成为增强自然语言理解的变革力量,代表着通用人工智能的重大进步。LLM 的应用超越了传统的语言界限,涵盖了科学领域各学科中开发的专业语言系统。这也导致了科学 LLM 的出现。作为科学人工智能(AI for Science)领域的一个新兴领域,科学 LLM 值得全面探索。然而,目前缺乏系统的、最新的调查来介绍它们。近日,来自浙江大学的研究团队,系统地描述了「科学语言」的概念,同时对科学 LLM 的最新进展进行了全面回顾。鉴于科学学科领域广阔,该分析重点关注生物和化学领域。这包括对
230页长文,涵盖5大科学领域,微软团队使用GPT-4探索LLM对科学发现的影响
编辑 | 紫罗前不久,微软 DeepSpeed 团队启动了一个名为 DeepSpeed4Science 的新计划,旨在通过 AI 系统优化技术实现科学发现。11 月 13 日,微软团队在 arXiv 预印平台发表题为《大型语言模型对科学发现的影响:使用 GPT-4 的初步研究》(「The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4」)的文章。文章篇幅长达 230 页。论文链接:,自然
- 1