MatMul

13瓦功耗处理10亿参数,接近大脑效率,消除LLM中的矩阵乘法来颠覆AI现状

编辑 | 萝卜皮通常,矩阵乘法 (MatMul) 在大型语言模型(LLM)总体计算成本中占据主导地位。随着 LLM 扩展到更大的嵌入维度和上下文长度,这方面的成本只会增加。加州大学、LuxiTech 和苏州大学的研究人员声称开发出一种新方法,通过消除过程中的矩阵乘法来更有效地运行人工智能语言模型。这从根本上重新设计了目前由 GPU 芯片加速的神经网络操作方式。研究人员描述了如何在不使用 MatMul 的情况下创建一个自定义的 27 亿参数模型,性能与当前最先进的 Transformer 模型相当。该研究以「Scal

从LLM中完全消除矩阵乘法,效果出奇得好,10亿参数跑在FPGA上接近大脑功耗

让语言模型「轻装上阵」。一直以来,矩阵乘法(MatMul)稳居神经网络操作的主导地位,其中很大原因归结为 GPU 专门针对 MatMul 操作进行了优化。这种优化使得 AlexNet 在 ILSVRC2012 挑战赛中一举胜出,成为深度学习崛起的历史性标志。在这当中,有个值得注意的点是,AlexNet 利用 GPU 来提高训练速度,超越了 CPU 的能力,至此,GPU 的加入使得深度学习仿佛赢得了「硬件彩票」。尽管 MatMul 在深度学习中很流行,但不得不承认的是它占据了计算开销的主要部分,主要表现为 MatMu
  • 1