MOLLEO

击败25个分子设计算法,佐治亚理工、多伦多大学、康奈尔提出大语言模型MOLLEO

作者 | 佐治亚理工学院王浩瑞编辑 | ScienceAI分子发现作为优化问题,因其优化目标可能不可微分而带来显著的计算挑战。进化算法(EAs)常用于优化分子发现中的黑箱目标,通过随机突变和交叉来遍历化学空间,但这会导致大量昂贵的目标评估。在这项工作中,佐治亚理工学院、多伦多大学和康奈尔大学研究者合作提出了分子语言增强进化优化(MOLLEO),通过将拥有化学知识的预训练大语言模型(LLMs)整合到进化算法中,显著改善了进化算法的分子优化能力。该研究以《Efficient Evolutionary Search Ov
  • 1