深度
MIT 开发深度化学模型的神经尺度策略,发现「神经尺度」定律
编辑 | 绿萝在数据可用性和计算方面,大规模使得自然语言处理和计算机视觉等深度学习关键应用领域取得了重要突破。越来越多的证据表明,规模可能是科学深度学习的关键因素,但物理先验在科学领域的重要性使得规模化的策略和收益变得不确定。近日,来自 MIT 的研究团队通过将模型和数据集大小改变多个数量级来研究大型化学模型中的神经尺度(neural-scaling)行为,研究具有超过 10 亿个参数的模型,并在多达 1000 万个数据点的数据集上进行预训练。研究考虑用于生成化学的大型语言模型和用于机器学习原子间势的图神经网络。研
11/13/2023 3:02:00 PM
ScienceAI
- 1
资讯热榜
罗永浩 Jarvis 初创项目“J1 Assistant AI 助理”上线,利用语音与大模型互动
类 Mac Mini 大小的个人 AI 超算:英伟达 Project Digits 发布,起价 3000 美元
3 到 5 秒即可同声传译 40 余种语言,时空壶推出 W4 Pro 实时翻译耳机
GPT-4o最自私,Claude更慷慨!DeepMind发布全新「AI道德测试」
Just keep scaling!思维链作者Jason Wei 40分钟讲座剖析LLM扩展范式
OpenAI最大秘密,竟被中国研究者破解?复旦等惊人揭秘o1路线图
全网都在扒的DeepSeek团队,是清北应届生撑起一片天
奥特曼回应一切:宫斗、马斯克、ChatGPT两周年
标签云
AI
模型
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
生成
训练
谷歌
视频
智能
学习
Midjourney
GPT
大模型
用户
AI创作
LLM
图像
微软
开源
技术
Meta
论文
Stable Diffusion
生成式
算法
蛋白质
芯片
马斯克
计算
神经网络
AI设计
Gemini
Sora
研究
腾讯
课程
代码
开发者
场景
伟达
3D
GPU
预测
模态
Transformer
华为
文本
驾驶
英伟达
神器推荐
机器学习
AI视频
语言
干货合集
LLaMA
深度学习
2024
算力
搜索
视频生成
苹果
科技
AI应用场景
应用
百度
写作
特斯拉
机器
安全
具身智能
Copilot
AI for Science
语音
prompt
视觉