SigLIP
模态编码器 | CLIP改进之SigLIP,采用sigmoid损失的图文预训练
DeepMind对CLIP改进的一篇工作--SigLIP,发表在2023CVPR。 简单看下研究动机:传统的对比学习方法如CLIP等依赖于 softmax 归一化,这需要一个全局视角来计算成对相似度,从而限制了批处理大小的扩展能力,并且在小批处理大小下表现不佳。 因此本文提出了一个简单的成对 Sigmoid 损失函数用于语言-图像预训练(SigLIP)。
4/9/2025 2:10:00 AM
Goldma
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型