toC
从DeepSeek MoE专家负载均衡谈起
上周中的时候, 同事给我了一份线上DeepSeek-R1推理的Expert激活的数据用来研究一些专家负载均衡的算法, 当然这些线上数据来自于公司内部的请求, 从中观测出前面10层专家基本上是相对均衡的, 而越到后面不均衡程度差异越大. 当时讨论到这个问题时, 是怀疑内部的一些请求是否专注于电商领域而带来的不平衡特性, 于是做了一些研究. 恰好搜到Intel的一篇论文《Semantic Specialization in MoE Appears with Scale: A Study of DeepSeek-R1 Expert Specialization》[1]有一些基于语义的MoE分析专家的专业性相关的问题, 再加上前几天看到某个公众号采访某院长的一个比较有趣的说法:“Dense模型适合toB业务,MoE模型适合toC业务”.
3/11/2025 12:35:00 AM
zartbot
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
2024
人形机器人
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
Claude
AGI
AI应用场景