图数据库
图数据库的剪枝在大型语言模型中的知识表示
译者 | 李睿审校 | 重楼图数据库的剪枝通过删除不必要的信息并加以改进,可以使LLM更快、更高效,同时节省电力和资源。 大型语言模型(LLM)通过从庞大的数据集中学习复杂的语言模式,极大地推进了自然语言处理(NLP)的发展。 然而,当这些模型与结构化知识图谱(用于表示实体之间关系的数据库)结合在一起时,可能面临一些挑战。
1/15/2025 7:52:53 AM
李睿
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
人形机器人
苹果
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型