性能
ScaleOT框架亮相AAAI 2025:提升隐私保护50%,降算力成本90%
近日,在全球人工智能顶级学术会议AAAI2025期间,蚂蚁数科、浙江大学、利物浦大学和华东师范大学联合团队提出创新的跨域微调(offsite-tuning)框架——ScaleOT。 该框架能在模型性能无损前提下,将隐私保护效果提升50%,与知识蒸馏技术相比,算力消耗显著降低90%,为百亿级参数模型的跨域微调提供高效轻量化方案,论文因创新性入选AAAI的oral论文(本届大会近13000篇投稿,口头报告比例仅4.6%)。 跨域微调是目前业内保护模型产权与数据隐私的主流方案,通过有损压缩将大模型转换为仿真器,数据持有方基于其训练适配器并返回给大模型完成调优,数据和模型均未出域,可保护双方隐私,但存在局限性:一是“均匀抽积木”式处理易致模型关键层缺失,使性能显著下降;二是用蒸馏技术弥补性能损失,计算成本高;且现有方法隐私保护缺乏灵活性。
2/26/2025 2:13:00 PM
AI在线
李飞飞谢赛宁新作「空间推理」:多模态大模型性能突破关键所在
李飞飞谢赛宁再发新成果:直接把o1式思考拉至下一个level——多模态大语言模型的空间思维! 这项研究系统评估了多模态大模型的视觉空间智能,结果发现:当前,即使是最先进的多模态大模型,在空间认知方面与人类相比仍有显著差距,测试中约71%的错误都源于空间推理方面的缺陷,即空间推理能力是当前主要瓶颈。 图片更为有趣的是,在这种情况下,思维链、思维树等常用的语言提示技术直接失灵了——不仅没有提升模型在空间任务上的表现,反而会使性能下降。
12/23/2024 12:37:34 PM
明确了:文本数据中加点代码,训练出的大模型更强、更通用
代码知识原来这么重要。如今说起大语言模型(LLM),写代码能力恐怕是「君子六艺」必不可少的一项。在预训练数据集中包含代码,即使对于并非专门为代码设计的大模型来说,也已是必不可少的事。虽然从业者们普遍认为代码数据在通用 LLM 的性能中起着至关重要的作用,但分析代码对非代码任务的精确影响的工作却非常有限。在最近由 Cohere 等机构提交的一项工作中,研究者系统地研究了代码数据对通用大模型性能的影响。论文链接:「预训练中使用的代码数据对代码生成以外的各种下游任务有何影响」。作者对范围广泛的自然语言推理任务、世界知识任
8/22/2024 6:20:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型