著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人

他提出的「COX 回归模型」曾深刻地影响了统计学研究。昨晚,英国著名统计学家 David Cox 去世,享年 97 岁。David Cox 因提出「COX 回归模型」而广为人知,并深刻地影响了统计学领域的研究。许多人自发地在社交媒体平台表达了悲痛和哀悼:David Cox 生平David Cox1924 年出生于英国伯明翰,在剑桥大学圣约翰学院学习数学,并在 Henry Daniels 和 Bernard Welch 的指导下于 1949 年在利兹大学获得博士学位。1950 年到 1956 年期间,David Co

他提出的「COX 回归模型」曾深刻地影响了统计学研究。

昨晚,英国著名统计学家 David Cox 去世,享年 97 岁。

图片

David Cox 因提出「COX 回归模型」而广为人知,并深刻地影响了统计学领域的研究。许多人自发地在社交媒体平台表达了悲痛和哀悼:

图片

图片

图片

David Cox 生平

David Cox1924 年出生于英国伯明翰,在剑桥大学圣约翰学院学习数学,并在 Henry Daniels 和 Bernard Welch 的指导下于 1949 年在利兹大学获得博士学位。

图片

1950 年到 1956 年期间,David Cox 在剑桥大学的统计实验室工作。1956 年到 1966 年,他在伦敦大学伯贝克学院担任「Reader」和统计学教授。1966 年,他担任伦敦帝国理工学院统计学系主任,后来成为数学系主任。1988 年,成为纳菲尔德学院的院长和牛津大学统计系的成员,最后于 1994 年正式退休。

David Cox 在统计和应用概率方面做出了开创性的贡献,主要学术贡献包括 Cox 过程,以及影响深远且应用广泛的 Cox 比例风险模型等。

David Cox 曾任国际统计协会、伯努利数理统计与概率学会、英国皇家统计学会主席。同时,他还是英国皇家学会院士暨英国社会科学院院士,美国科学院、丹麦皇家科学院外籍院士。

因其做出的重要贡献,David Cox 获得皇家统计学会的盖伊奖章(1961 年)和金奖(1973 年),并于 1985 年被英国女王伊丽莎白二世封为爵士。2010 年,他因「对统计理论和应用的开创性贡献」而被授予英国皇家学会科普利奖章。他也是第一个获得国际统计奖(International Prize in Statistics)的人(2017 年)。

Cox 回归模型

生存分析的统计学领域涉及到一个特定事件发生之前的时间间隔,比如机械故障或者病人死亡。此处发生故障或者病人死亡的比率称为危险函数。

在 1972 年引入的 Cox 比例风险回归模型中,David Cox 提出了一个风险函数,该风险函数分为时间依赖和时间独立两部分。

图片

论文链接:https://rss.onlinelibrary.wiley.com/share/XB97VAHIGECJZEBBBTWZ?target=10.1111/j.2517-6161.1972.tb00899.x

该模型通常用于医学研究中分析一个或多个前定变量对患者生存时间的影响。由于将依赖时间的输入与不依赖时间的输入分开,医学数据的分析得以大幅简化,Cox 模型在医学研究中得到了广泛的应用。据谷歌学术不完全统计,这篇文章的引用率目前超过 56612 次,也是迄今生存分析中应用最多的多因素分析方法。

图片

2014 年 10 月,在《Nature》杂志评出的引用次数最多的 100 篇论文之中,Cox 回归成为「引用率最高的三篇统计学论文」之一。

此外,David Cox 著有许多统计学领域的书籍,包括随机过程理论(与 H.D.Miller 合著,1965 年) ,理论统计(与 d.v. Hinkley 合著,1974 年) ,生存数据分析(与 David Oakes 合著,1984 年) ,以及推论统计学原理(2006 年)。

相关资讯

Objective-C之父Brad J. Cox去世,他推动了今天苹果的软件生态

组过乐队,创建过编程语言,Brad J. Cox 的一生精彩而圆满。

终于把统计学中的抽样方法搞懂了!!!

大家好,我是小寒今天给大家介绍统计学中的一个关键概念,抽样抽样是一种从总体中选取部分个体(样本)以获得关于总体的信息的方法。 由于在大多数情况下直接研究整个总体的每一个个体并不实际,因此抽样为我们提供了在不完全观测总体的情况下推断总体特征的手段。 抽样的理论和技术被广泛用于统计学、社会科学、市场调查和其他需要分析数据的领域。

Anthropic新研究:用统计思维评估大模型

目前,评估大模型的方法就是比在基准测试中的数值,在于突出SOTA结果,并未充分考虑统计显著性。 例如,在对不同模型进行评估时,若仅依据表面的得分高低判断优劣,而不考虑数据的不确定性和变异性,可能会得出不准确的结论。 所以,Anthropic提出了将严谨的统计思维引入大模型评估领域。