大模型
如何使用Hugging Face Transformers微调F5以回答问题?
译者 | 布加迪审校 | 重楼使用Hugging Face Transformers对T5模型进行微调以处理问题回答任务很简单:只需为模型提供问题和上下文,它就能学会生成正确的答案。 T5是一个功能强大的模型,旨在帮助计算机理解和生成人类语言。 T5的全称是“文本到文本转换器”。
Ilya认错,Scaling Law崩了?自曝SSI秘密技术路线取代OpenAI
昨天,The Information爆料,传统的大模型Scaling Law已经撞墙,OpenAI下一代旗舰Orion遭遇瓶颈。 就在刚刚,路透社也发文表示,由于当前方法受到限制,OpenAI和其他公司正在寻求通向更智能AI的新途径。 有趣的是,昨天拱火的The Information,今天又急忙发出一篇文章来灭火。
在家中完成LLM微调高效指南(上)
编辑 | 言征出品 | 51CTO技术栈(微信号:blog51cto)LLM在生成文本和理解信息方面非常有效,但它们最终受限于训练数据的语料库。 例如,如果你让一个通用的预训练模型回答与你的业务特定流程或操作有关的问题,最好的结果是它拒绝,最坏的情况是它会信誓旦旦地给出一个看似合理但错误的答案。 当然,你可以通过自己训练一个模型来解决这个问题,但所需的资源往往超出实际可行的范围。
多模态模型免微调接入互联网,即插即用新框架,效果超闭源商用方案
一个5月份完成训练的大模型,无法对《黑神话·悟空》游戏内容相关问题给出准确回答。 这是大模型的老毛病了。 因为《黑神话》8月才上市,训练数据里没有它的相关知识。
谷歌、MIT等开发多智能体医疗决策框架MDAgents,医学LLM新用法
编辑 | 白菜叶基础模型正在成为医学领域的宝贵工具。 然而,尽管它们前景广阔,但在复杂的医学任务中如何最好地利用大型语言模型 (LLM) 仍是一个悬而未决的问题。 麻省理工学院、谷歌研究院和首尔国立大学医院的研究人员提出了一种新颖的多智能体框架,称为医疗决策智能体 (MDAgents),它通过自动为 LLM 团队分配协作结构来帮助解决这一差距。
Seed校招博士自述:我为什么选择来字节做大模型
原文来自知乎博主张逸霄对“大家能分享一下当前博士就业的情况吗”的回答。 人在英国,刚过答辩。 今年拿了腾讯 AI Lab(青云计划)、字节跳动(Seed) ,国外有之前实习的 Sony Research 和 Yamaha 的 return offer,国外也有正在面试的 Adobe 和 Meta。
免训练加速DiT!Meta提出自适应缓存新方法,视频生成快2.6倍
现在,视频生成模型无需训练即可加速了? ! Meta提出了一种新方法AdaCache,能够加速DiT模型,而且是无需额外训练的那种(即插即用)。
类Sora模型到底懂不懂物理?字节完成系统性实验,图灵奖得主杨立昆赞转!
Sora爆火以来,“视频生成模型到底懂不懂物理规律”受到热议,但业界一直未有研究证实。 近日,字节跳动豆包大模型团队公布最新论文,研究历时8个月,围绕“视频生成模型距离世界模型有多远”首次在业界完成系统性实验并给出明确结论:视频生成模型可以记忆训练案例,但暂时还无法真正理解物理规律,做到“举一反三”。 图灵奖得主、Meta首席AI科学家杨立昆点赞并转发了该研究,表示“结论不令人意外,但很高兴终于有人做了这个尝试!
OpenAI o1太贵?那就自己做一个!纯提示方法让普通LLM进化出复杂推理能力
九月份,OpenAI o1正式登场。 作为新一代的老大哥,o1系列专注于复杂的推理任务,一经推出也是直接屠榜了大模型竞技场。 图片在下面这些难度较大的数学、编码、科学等任务中,o1不仅比GPT-4o强上一大截,甚至比人类专家还要凶猛。
借助LLM实现模型选择和试验自动化
译者 | 布加迪审校 | 重楼大语言模型(LLM)已成为一种工具,从回答问题到生成任务列表,它们在许多方面简化了我们的工作。 如今个人和企业已经使用LLM来帮助完成工作。 代码生成和评估最近已经成为许多商业产品提供的重要功能,以帮助开发人员处理代码。
达摩院发布八观气象大模型:精度达1小时1公里,率先落地新能源场景
11月6日,阿里巴巴达摩院(湖畔实验室)在北京举行决策智能产品发布会,正式发布八观气象大模型,在全球气象模型基础上引入区域多源数据,时空精度最高可达1公里*1公里*1小时。 通过大幅提升对温度、辐照、风速等关键气象指标的预测性能,八观气象大模型率先落地新能源占比高的新型电力系统,助力国网山东电力调控中心成功预测了多次极端天气,新能源发电功率、电力负荷预测准确率分别提升至96%和98%以上。 传统上,气象学家们根据物理规律,将大气运动变化编写成一系列数学物理方程再进行数值计算,耗费大量算力资源,且受到物理模型的瓶颈制约,难以快速、高效地满足各行业不同准确率、分辨率的天气预需求。
IBM Granite 3.0模型:为大规模企业AI应用指明方向
IBM在企业AI领域做出了一系列颇为独特的探索。 蓝色巨人目前正在推动全栈技术布局,以自2020年来兴起的AI和混合云作为企业战略领域的两大基础性支柱,同时借鉴了自身在其产品组合中积累下的优势。 更重要的是,这套方案扭转了主要以AI概念验证为目标的总体趋势,转而专注于解决高度具体的业务用例,且执行效率更高。
大模型重构生命科学!最大基础模型面世,解锁DNA超长序列,参数规模达2100亿
生命科学领域,已经率先进入到基础模型时代! 今年,化学诺贝尔奖授予了AlphaFold,AI Science受到空前的关注。 人们惊叹于,仅仅是一个蛋白质结构预测模型,就能释放出如此巨大的行业潜力。
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
全新Agent框架,将知识图谱从知识获取来源直接升级为Agent编排引擎。 蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。 这套框架目前在蚂蚁集团内多个复杂DevOps场景落地验证,同时可通过快速搭建的创新AI文本游戏“谁是卧底”游戏快速感受一下。
从谷歌、微软、百度,到Perplexity、Kimi、秘塔,大模型真的“搭”上了搜索的快车吗?
编辑 | 伊风出品 | 51CTO技术栈(微信号:blog51cto)回到一年前, Perplexity 可能没想到自己押宝的这条赛道如今挤满了人。 毕竟,直到今年 4 月,这家 AI 搜索的领头羊才刚刚迈入 10 亿美元俱乐部。 然而就在上周,谷歌和 OpenAI 前后脚发布了新的 AI 搜索功能,大有打擂台的硝烟味。
谷歌内部项目:大模型 AI 智能体发现了代码漏洞
开源数据库引擎 SQLite 有 bug,还是智能体检测出来的! 通常,软件开发团队会在软件发布之前发现软件中的漏洞,让攻击者没有破坏的余地。 模糊测试 (Fuzzing)是一种常见的软件测试方法,其核心思想是将自动或半自动生成的随机数据输入到一个程序中,并监视程序异常。
英伟达团队机器训练新方法!仅5次演示让机器生成1000个新demo,李飞飞高徒与徒孙联手出品
人类只需要演示五次,就能让机器人学会一项复杂技能。 英伟达实验室,提出了机器人训练数据缺乏问题的新解决方案——DexMimicGen。 五次演示之后,DexMimicGen就可以直接模仿出1000个新的demo。
创新能力超越AI Scientist,上海AI Lab「AI 科研团队」VirSci来了
编辑 | ScienceAI由上海人工智能实验室提出的 VirSci(Virtual Scientists)系统是一个基于大语言模型(LLM)的多智能体协作平台,专注于模拟科学家团队的合作过程,从而加速科研创新。 不同于以往的单智能体系统,VirSci 通过使用真实科学家的数据来模拟科学团队的多人协作,不仅可以通过团队成员的合作讨论来生成更具创新性和影响力的科研想法,还展现出作为「科学学」(Scienceof Science)研究工具的巨大潜力。 该研究以「Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation」为题,于 2024 年 10 月 12 日发布在 arXiv 预印平台。