大模型

图神经网络准确预测无机化合物性质,加速固态电池的设计

编辑/绿萝大规模从头计算与结构预测的进步相结合,在无机功能材料的发现中发挥了重要作用。目前,在无机材料的广阔化学空间中,只发现了一小部分。实验和计算研究人员都需要加速探索未知的化学空间。来自美国国家可再生能源实验室(NREL)、科罗拉多矿业学院和伊利诺伊大学的研究人员展示了一种可以准确预测无机化合物性质的机器学习方法。展示了基态(GS)和更高能量结构的平衡训练数据集,对使用通用图神经网络(GNN)架构准确预测总能量的重要性。该研究可加速固态电池的设计。该研究以「Predicting energy and stabi

增大模型依然有用,DeepMind用2800亿参数的Gopher,测试语言系统极限

DeepMind 连发三篇论文,全面阐述大规模语言模型依然在进展之中,能力也在继续增强。近年来,国内外各大 AI 巨头的大规模语言模型(large language model,LLM)一波接着一波,如 OpenAI 的 GPT-3、智源研究院的悟道 2.0 等。大模型已然成为社区势不可挡的发展趋势。然而,当前语言模型存在着一些问题,比如逻辑推理较弱。那么,我们是否可以仅通过添加更多数据和算力的情况下改进这些问题呢?或者,我们已经达到了语言模型相关技术范式的极限?今日,DeepMind「一口气」发表了三篇论文,目的

归一化提高预训练、缓解梯度不匹配,Facebook的模型超越GPT-3

来自 Facebook AI 的研究者提出了 NormFormer,该模型能够更快地达到目标预训练的困惑度,更好地实现预训练困惑度和下游任务性能。

5300亿参数的「威震天-图灵」,微软、英伟达合力造出超大语 言模型

在微软和英伟达的共同努力下, Turing NLG 17B 和 Megatron-LM 模型的继承者诞生了:5300 亿参数,天生强大,它的名字叫做「Megatron-Turing」。

神经网络debug太难了,这里有六个实用技巧

神经网络的 debug 过程着实不容易,这里是一些有所帮助的 tips。

专访唐杰 | 我国首个超大智能模型「悟道」发布,迎接基于模型的AI云时代

唐杰认为,超大规模预训练模型的出现,很可能改变信息产业格局,继基于数据的互联网时代、基于算力的云计算时代之后,接下来可能将进入基于模型的 AI 时代。智源研究院致力于成为这样一个时代的引领者,集聚各方资源力量,构建一个超大规模智能模型技术生态和开放平台,供北京乃至全国的研究人员、开发者和企业使用。

百分点认知智能实验室:基于不完全标注样本集的信息抽取实践

编者按信息抽取是从文本数据中抽取特定信息的一种技术,命名实体识别(Named Entity Recognition, NER)是信息抽取的基础任务之一,其目标是抽取文本中具有基本语义的实体单元,在知识图谱构建、信息抽取、信息检索、机器翻译、智能问答等系统中都有广泛应用。基于监督学习的NER系统通常需要大规模的细粒度、高精度标注数据集,一旦数据标注质量下降,模型的表现也会急剧下降。利用不完全标注的数据进行NER系统的建立,越来越受到专家学者们的关注。第九届国际自然语言处理与中文计算会议(NLPCC 2020)针对此业

提供基于transformer的pipeline、准确率达SOTA,spaCy 3.0正式版发布

spaCy 3.0 正式版来了。

AI模型被「骗」怎么破?《燃烧吧!天才程序员》冠军团队解决方案出炉

前段时间,一档名为《燃烧吧!天才程序员》的竞赛类综艺让「程序员」这一群体成功破圈,也呈现了 AI 在解决实际问题的过程中面临的一些挑战,如数据集中存在对抗样本、图像中存在噪声等。在本文中,CLS 战队(大赛头名团队)的优秀选手、奥比中光算法工程师埼玉详细解读了他们在比赛中用到的解决方案。近日,由蚂蚁集团、清华大学等组织共同协办的首届「Inclusion|A-tech 科技精英赛」(以下简称 A-tech 大赛)圆满落幕。奥比中光科技集团股份有限公司 (以下简称「奥比中光」) 研究院 SDK 组负责人小蛮腰、算法工程

如何防止我的模型过拟合?这篇文章给出了6大必备方法

正如巴菲特所言:「近似的正确好过精确的错误。」